
Abstract. Methods for simulating the dynamics of
composite systems, where part of the system is treated
quantum mechanically and its environment is treated
classically, are discussed. Such quantum–classical sys-
tems arise in many physical contexts where certain
degrees of freedom have an essential quantum character
while the other degrees of freedom to which they are
coupled may be treated classically to a good approxi-
mation. The dynamics of these composite systems are
governed by a quantum–classical Liouville equation for
either the density matrix or the dynamical variables
which are operators in the Hilbert space of the quantum
subsystem and functions of the classical phase space
variables of the classical environment. Solutions of the
evolution equations may be formulated in terms of
surface-hopping dynamics involving ensembles of tra-
jectory segments interspersed with quantum transitions.
The surface-hopping schemes incorporate quantum
coherence and account for energy exchanges between
the quantum and classical degrees of freedom. Various
simulation algorithms are discussed and illustrated with
calculations on simple spin-boson models but the
methods described here are applicable to realistic many-
body environments.

Keywords: Nonadiabatic dynamics – Quantum–classical
dynamics – Surface hopping – Open quantum systems

1 Introduction

It is difficult to simulate the dynamics of quantum many-
body systems. Although it is possible to perform
classical molecular dynamics simulations of condensed
phase and complex systems, many problems cannot be
treated accurately using classical mechanics. One way to

treat problems of this type is to adopt an approach
based on mixed quantum–classical dynamics where part
of the system is treated classically and the remainder of
the system is treated quantum mechanically. Proton and
electron transfer processes, ubiquitous in chemical and
biochemical systems, are two examples of systems where
such a quantum–classical approach may be useful.

Approximations based on mixed quantum–classical
dynamics are well known [1, 2, 3] and many different
approaches using this idea have been constructed. These
include methods employing path integral formulations
of quantum mechanics [4], mean-field approximations
to the quantum dynamics [5, 6], various semiclassical
approximations [7] as well as methods based on surface-
hopping schemes [8, 9, 10]. Quantum–classical methods
involve classical phase space degrees of freedom of the
environment or bath (R; P ) and represent the quantum
degrees of freedom in a suitable set of basis states. Often
adiabatic or Born–Oppenheimer states that depend
parametrically on the bath coordinates, R, are used to
represent the quantum subsystem in mean-field and
surface-hopping methods. In mean-field approximations
the evolution is determined by mean forces that are
calculated from the expectation value of the potential
using the instantaneous value of the system wave func-
tion. In most surface-hopping schemes the classical
evolution takes place on single adiabatic potential-
energy surfaces, interspersed by quantum transitions.

In this article we discuss an approach to nonadiabatic
mixed quantum–classical dynamics based on a quan-
tum–classical Liouville equation. In Sect. 2 we sketch
how this evolution equation can be obtained from the
quantum mechanical von Neumann equation for the
density matrix by taking a partial Wigner transform and
performing an expansion of the evolution operator in a
small parameter determined by the ratios of the masses
of the quantum and classical particles. The abstract
evolution equations are written in terms of subsystem
and adiabatic bases in Sect. 3. The formal solutions
of the evolution equations are given in Sect. 4, while
some details concerning the computation of the part
of the evolution operator responsible for nonadiabatic
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dynamics are presented in Sect. 5. The results are illus-
trated by simulations on spin-boson systems in Sect. 6
and the conclusions of the paper are given in Sect. 7.

2 Quantum–classical equations of motion

Suppose that a system can be partitioned into a set of
quantum mechanical degrees of freedom and a set of
classical environmental degrees of freedom. In isolation
from each other each of these two sets of degrees of
freedom evolves according to the well-known equations
of quantum and classical mechanics. In the approach
discussed in this paper, the dynamics of the composite
quantum–classical system are described by the Liouville
equation,

@q̂qWðR; P ; tÞ
@t

¼ � i
�h
½ĤHW; q̂qWðtÞ�

þ 1

2

�
fĤHW; q̂qWðtÞg � fq̂qWðtÞ; ĤHWg

�

¼ �½ĤHW; q̂qWðtÞ� ¼ �iL̂Lq̂qWðtÞ ; ð1Þ
that gives the time evolution of the density matrix
q̂qWðR; P ; tÞ expressed in the partial Wigner representa-
tion introduced later [11, 12, 13, 14, 15, 16, 17, 18]. The
subscript W denotes this partial Wigner transform. The
corresponding equation of motion for an observable
ÂAWðR; P ; tÞ is [17]

dÂAWðR; P ; tÞ
dt

¼ ½ĤHW; ÂAWðtÞ� ¼ iL̂LÂAWðtÞ : ð2Þ

The last lines in these equations define the quantum–
classical bracket for any two operators ðÂAW; B̂BWÞ and the
Liouville operator L̂L [17, 19]. Both the density matrix
and the observable are operators in the Hilbert space of
the quantum degrees of freedom and functions of the
phase space coordinates (R; P ) of the classical environ-
ment. To simplify the notation we drop the dependence
on the classical phase space variables when confusion is
unlikely to arise. In these equations ½�; �� is the commu-
tator and f�; �g is the Poisson bracket. The Hamiltonian
ĤHWðR; PÞ of the system is

ĤHWðR; PÞ ¼
P 2

2M
þ p̂p2

2m
þ V̂VWðq̂q;RÞ ; ð3Þ

and consists of the sum of the kinetic energy of the
classical particles, P 2=2M , the kinetic energy operator
for the quantum degrees of freedom, p̂p2=2m, and
the total potential-energy operator, V̂VWðq̂q;RÞ ¼ V̂Vsðq̂qÞþ
VbðRÞ þ V̂Vcðq̂q;RÞ, which describes all interactions within
the quantum (s) and classical bath (b) subsystems as well
as the interactions (c) between the subsystems. Hence-
forth, the hats will be used to denote quantum operators.

An examination of Eqs. (1) and (2) shows that if
the classical environment is not present, Eq. (1) reduces
to the quantum Liouville equation for the quantum
subsystem,

@q̂qsðtÞ
@t
¼ � i

�h
½ĤHs; q̂qsðtÞ� ; ð4Þ

where the quantum subsystem Hamiltonian is ĤHs ¼ p̂p2

2mþ
V̂Vsðq̂qÞ, while Eq. (2) becomes the Heisenberg equation
of motion. Similarly, if the quantum subsystem is not
present one obtains the classical Liouville equation,

@qbðR; P ; tÞ
@t

¼ fHbðR; PÞ; qbðR; P ; tÞg ; ð5Þ

where the classical bath Hamiltonian isHbðR; PÞ ¼
P 2

2M þ VbðRÞ, and Eq. (2) takes the form of the classical
evolution equation for a bath dynamical variable.

In Eq. (1), the coupling between these two subsystems
appears in both terms in the quantum–classical Liouville
operator since V̂VWðq̂q;RÞ accounts for interactions
between the two subsystems. The quantum character
manifests itself in the Poisson bracket terms since the
quantum operators do not commute and their order
must be respected. This feature along with the properties
of the commutator imply that the right-hand sides of
Eqs. (1) and (2) are antisymmetric, an important prop-
erty guaranteeing energy conservation, as can be seen by
letting ÂAW ¼ ĤHW in Eq. (2). Some quantum–classical
evolution equations with similar structure [20, 21] do not
satisfy this antisymmetry property and difficulties with
such approaches have been noted [22].

The derivation of Eq. (1) starts with the von Neu-
mann equation,

@q̂q
@t
¼ � i

�h
½ĤH ; q̂q� ; ð6Þ

for a quantum system comprising two quantum subsys-
tems with light, m, and heavy, M , masses and coordinate
and momentum operators ðq̂q; p̂pÞ and ðQ̂Q; P̂P Þ, respectively.
The full quantum Hamiltonian operator then takes the
form, ĤH ¼ P̂P 2=2M þ p̂p2=2mþ V̂V ðq̂q; Q̂QÞ. The heavy-mass
degrees of freedom will ultimately be treated classically
and constitute the environment for the quantum sub-
system.

To treat only the environmental degrees of freedom
classically, it is convenient to take a partial Wigner
transform of Eq. (6) over the 3N heavy-mass degrees of
freedom,

q̂qWðR; PÞ ¼ ð2p�hÞ�3N
Z

dz eiP �z=�h R� z
2
jq̂qjRþ z

2

D E
: ð7Þ

The subscript W refers to this partial Wigner transform
[23]. Similarly, the partial Wigner transform of an
operator ÂA is

ÂAWðR; P Þ ¼
Z

dz eiP �z=�h R� z
2
jÂAjRþ z

2

D E
: ð8Þ

To take the quantum–classical limit in Eq. (6) we scale
the variables so that the momenta of the heavy particles
have the same magnitude as those of the light particles,
lP , where l ¼ ðm=MÞ1=2, and measure all distances in
length units appropriate for the quantum subsystem [17,
24].1 Letting energy be measured in terms of the energy
unit, �0, time in units of t0 ¼ �h=�0 and length in units of

1 A quantum-classical description of a system can also be justified
by arguments based on decoherence
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km ¼ ð�h2=m�0Þ1=2, the momentum units are selected to be
pm ¼ ðmkm=t0Þ ¼ ðm�0Þ1=2 and PM ¼ ðM�0Þ1=2. To pro-
ceed we make use of the rule for the Wigner transform of
a product of operators [23]

ðÂAB̂BÞW ¼ ÂAWe�hK=2iB̂BW ; ð9Þ
where the operator K is the negative of the Poisson
bracket operator,

K ¼rP

 
� rR

!
� rR

 
� rP

!
; ð10Þ

and the direction of an arrow indicates the direction in
which the operator acts. Using this result, the partial
Wigner transform of Eq. (6), when expressed in the
scaled units, q̂q0 ¼ q̂q=km, R0 ¼ R=km, p̂p0 ¼ p̂p=pm, P 0 ¼ P=PM
and t0 ¼ t=t0, takes the form

@q̂q0WðR0; P 0; tÞ
@t0

¼ �i ĤH 0WelK0=2iq̂q0Wðt0Þ
h

�q̂q0Wðt0ÞelK0=2iĤH 0W
i
: ð11Þ

Expanding the right-hand side of Eq. (11) to first order

in the small parameter l ¼ ðm=MÞ1=2 one finds

@q̂q0WðR0; P 0; tÞ
@t0

¼ �i ĤH 0W 1þ lK0

2i

� �
q̂q0Wðt0Þ

�

�q̂q0Wðt0Þ 1þ lK0

2i

� �
ĤH 0W

�
: ð12Þ

Equation (12), when expressed in unscaled units, is the
mixed quantum–classical Liouville equation (Eq. 1). The
expansion of the evolution operator, expressed in scaled
units, is analytic in l. By contrast, the development of
the unscaled form of the evolution operator in powers of
�h is not analytic owing to the factor of 1=�h multiplying
the commutator in Eq. (6).

Equation (12) leads to the introduction of the quan-
tum–classical bracket and Liouville operator,

ðĤH 0W; ÂA0WÞ ¼ iL0ÂA0W

¼ i ĤH 0W 1þ lK0

2i

� �
ÂA0W � ÂA0W 1þ lK0

2i

� �
ĤH 0W

� �
;

ð13Þ
where the OðlÞ dependence is manifest. Using these
scaled units, the action of the mixed quantum–classical
Liouville operator on the product of two operators,
ĈC0W ¼ ÂA0Wð1þ lK0=2iÞB̂B0W is

iL̂L0ĈC0W ¼ ðiL̂L0ÂA0WÞ 1þ lK0

2i

� �
B̂B0W

þ ÂA0W 1þ lK0

2i

� �
ðiL̂L0B̂B0WÞ þ Oðl2Þ : ð14Þ

Given this result we find that [19]

ĈC0Wðt0Þ ¼ eiL̂L0t0 ĈC0W

¼ eiL̂L0t0 ÂA0W
� �

1þ lK0

2i

� �
eiL̂L0t0 B̂B0W
� �

þ Oðl2Þ

¼ ÂA0Wðt0Þ 1þ lK0

2i

� �
B̂B0Wðt0Þ þ Oðl2Þ : ð15Þ

Therefore, the quantum–classical evolution of a com-
posite operator cannot be determined exactly in terms
of the quantum–classical evolution of its constituent
operators, but only to terms Oðl2Þ, in contrast both to
quantum and to classical dynamics.

Furthermore, given three arbitrary operators, the
Jacobi relation holds only to linear order in the small
parameter l [19, 25],

ÂA0W; ðB̂B0W; ĈC0WÞ
� �

þ ĈC0W; ðÂA0W; B̂B0WÞ
� �

þ B̂B0W; ðĈC0W; ÂA0WÞ
� �

¼ Oðl2Þ ; ð16Þ
for quantum–classical algebra.

These results have implications for the evaluation of
transport properties and time correlation functions in
quantum–classical dynamics [19, 25].

3 Representation in basis sets

The formal solutions of Eqs. (1) and (2) are

q̂qWðR; P ; tÞ ¼ e�iL̂Ltq̂qWðR; P ; 0Þ;

ÂAWðR; P ; tÞ ¼ eiL̂LtÂAWðR; P ; 0Þ ; ð17Þ
since the quantum–classical Liouville operator is time-
independent if the Hamiltonian is independent of time.
The density matrix and observable are abstract
operators in the Hilbert space of the quantum
subsystem and these equations may be expressed in
any convenient basis to obtain their solution. Letting
fjaig be a set of basis vectors that spans the Hilbert
space of the quantum subsystem, Eq. (17) may be
written as

Aaa0
W ðR; P ; tÞ ¼

X
bb0

eiL̂Lt
� �

aa0;bb0
Abb0

W ðR; P ; 0Þ ; ð18Þ

where Aaa0
W ðR; P ; tÞ ¼ hajÂAWðR; P ; tÞja0i. The nature of the

problem being investigated will often dictate the most
convenient choice of basis to be used in the calculation.
Two especially useful quantum bases in which to
represent the dynamics are the subsystem basis and the
adiabatic basis.

3.1 Subsystem basis

Writing the Hamiltonian as

ĤHWðR; PÞ ¼ HbðR; P Þ þ ĤHs þ V̂Vcðq̂q;RÞ ; ð19Þ
the subsystem basis is given by the solutions of the
eigenvalue problem, ĤHsjai ¼ �ajai. In this basis the
Liouville operator takes the form [17]

iLaa0;bb0 ¼ i~xxaa0 þ iLbð Þdabda0b0

þ dab �
i
�h

V b0a0
c � 1

2

@V b0a0
c

@R
� @
@P

 !

þ da0b0
i
�h

V ab
c �

1

2

@V ab
c

@R
� @
@P

� �
; ð20Þ
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where ~xxaa0 ¼ ð�a � �a0 Þ=�h, V aa0
c ¼ hajV̂Vcja0i and the bath

Liouville operator is iLb ¼ P
M

@
@Rþ FbðRÞ @@P

� �
with

FbðRÞ ¼ �@Vb=@R the force on the bath particles.

3.2 Adiabatic basis

The adiabatic basis vectors, ja; Ri, are given by the

solutions of ĥhWja; Ri ¼ EaðRÞja; Ri, where ĥhW ¼ p̂p2

2mþ
V̂VWðq̂q;RÞ. We adopt an Eulerian view of the dynamics
so that the adiabatic basis vectors are parameterized by
the time-independent values of the bath coordinates R.
The Liouville operator has matrix elements, [17]

iLaa0;bb0 ¼ ðixaa0 þ iLaa0 Þdabda0b0 � Jaa0;bb0

� iL0
aa0dabda0b0 � Jaa0;bb0 ; ð21Þ

where xaa0 ðRÞ ¼ ½EaðRÞ � Ea0 ðRÞ�=�h is a frequency deter-
mined by the difference in energies of adiabatic states
and iLaa0 is the Liouville operator that describes classical
evolution determined by the mean of the Hellmann–
Feynman forces for adiabatic states a and a0,

iLaa0 ¼
P
M
� @
@R
þ 1

2
F a
W þ F a0

W

� �
� @
@P

: ð22Þ

The operator Jaa0;bb0 is responsible for nonadiabatic
transitions and corresponding variations of the bath
momentum, and has the form

Jaa0;bb0 ¼ �
P
M
� dab 1þ 1

2
Sab �

@

@P

� �
da0b0

� P
M
� d�a0b0 1þ 1

2
S�a0b0 �

@

@P

� �
dab ; ð23Þ

where dab ¼ ha; RjrRjb; Ri is the nonadiabatic coupling
matrix element, Sab ¼ DEabd̂dabð P

M � d̂dabÞ�1 with DEabðRÞ ¼
EaðRÞ � EbðRÞ.

Since the quantum–classical evolution equation is
independent of the basis, we see that its solution can be
constructed using any convenient basis. In contrast,
quantum–classical equations of motion have been con-
structed by first representing the partially Wigner
transformed quantum equations of motion in a basis
and then making approximations to yield a quantum–
classical limit [26, 27]. However, this approach may lead
to equations that do not conserve the energy and are
naturally basis-set dependent.

4 Solution of evolution equations

The representation in the adiabatic basis is especially
instructive for formulating the dynamics in terms of
surface-hopping trajectories [17, 28]. To this end the
evolution operator may be separated into diagonal and
off-diagonal parts as in Eq. (21) and this decomposition
substituted into the operator identity,

eðÂAþB̂BÞt ¼ eÂAt þ
Z t

0

dt0 eÂAðt�t0ÞB̂BeðÂAþB̂BÞt0 ; ð24Þ

to obtain

e�iL̂Lt
� �

aa0;bb0
¼ e�iL0

aa0 tdabda0b0 þ
X
mm0

Z t

0

dt0 e�iL0
aa0 ðt�t0Þ

� Jaa0mm0 e�iL̂Lt0
� �

mm0;bb0
: ð25Þ

This equation gives the evolution operator as an integral
equation in Dyson form. The diagonal part of the
quantum–classical evolution superoperator, expfiL0

aa0 tg,
may be written explicitly in terms of classical evolution
on the ðaa0Þ surface as

e�iL0
aa0 ðt�t0Þ ¼ e

�i
Rt0
t

ds xaa0 ðRaa0 ;sÞ
e�iLaa0 ðt�t0Þ

�Waa0 ðt; t0Þe�iLaa0 ðt�t0Þ ; ð26Þ
as demonstrated in Ref. [17], thus, it involves the
product of a phase factor and a classical evolution
operator. If a ¼ a0 the phase factor is unity and
evolution is by Newton’s equations of motion on a
single a adiabatic surface.

The solution of the integral equation (Eq. 25) may be
found by iteration to yield a representation of the
dynamics as a sequence of terms involving increasing
numbers of nonadiabatic transitions [17],

q
a0a00
W ðR; P ; tÞ ¼ e

�iL0

a0a0
0

t
q

a0a00
W ðR; PÞ þ

X1
n¼1

�
X

ða1a01Þ:::ðana0nÞ

Zt0

0

dt1

Zt1

0

dt2:::
Ztn�1

0

dtn

�
Yn

k¼1
e
�iL0

ak�1a0
k�1
ðtk�1�tkÞ

Jak�1a0k�1;aka0k

� �

� e
�iL0

ana0n
tnqana0n

W ðR; P Þ ; ð27Þ
where qaa0

W ðR; PÞ is the initial value of the density matrix
element.

The successive terms in the series correspond to
increasing numbers of nonadiabatic transitions, starting
with the first term that describes simple adiabatic
dynamics. As an example of the structure of the terms in
the series, consider computing populations given by the
diagonal elements of the density matrix. The quantum–
classical approximation to the population in state a at
phase point ðR; P Þ at time t is given by a sum of terms
starting with adiabatic evolution on state a. The contri-
butions to qaa

WðR; P ; tÞ are determined by backward evo-
lution from time t to time 0. Single nonadiabatic
contributions appear next where transitions to states b
(b 6¼ aÞ occur at times t0 intermediate between t and 0.
Such transitions are accompanied by continuous
momentum changes in the environment specified by the
term in J involving amomentum derivative. Since a single
quantum transition takes place this contribution to
qaa
WðR; P ; tÞmust arise from an off-diagonal density matrix

element, qab
W at time 0. During the portion of the evolution

segment from t0 to 0, the classical environmental phase
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space coordinates are propagated on the mean of the two
a and b adiabatic surfaces and a phase factor, Wab,
contributes to the population in state a.

Similar interpretations can be given to the higher-
order terms in the series involving multiple nonadiabatic
transitions. For example, if the initial state is diagonal,
then only contributions with even numbers of nonadia-
batic transitions can affect the populations at time t. In
this case, as a consequence of the presence of the phase
factor W, between any two nonadiabatic transitions the
system is in a coherent superposition of states, which is
destroyed by the final nonadiabatic transition. A sche-
matic example of a trajectory with two nonadiabatic
transitions is shown in Fig. 1.

Instead of evolving the density matrix, we may con-
sider the time evolution of an operator ÂAWðR; PÞ and
compute its expectation value at time t as

hAiðtÞ ¼
X
a0a00

Z
dR dP A

a0a00
W ðR; PÞqa0

0
a0

W ðR; P ; tÞ

¼
X
a0a00

Z
dR dP A

a0a00
W ðR; P ; tÞqa0

0
a0

W ðR; P Þ ; ð28Þ

where

A
a0a00
W ðR;P ; tÞ¼ e

iL0

a0a0
0

t
A

a0a00
W ðR;P Þ

þ
X1
n¼1
ð�1Þn

X
ða1a01Þ:::ðana0nÞ

Zt0

0

dt1

Zt1

0

dt2:::
Ztn�1

0

dtn

�
Yn

k¼1
e

iL0

ak�1a0
k�1
ðtk�1�tkÞ

Jak�1a0k�1;aka0k

� �

� e
iL0

ana0n
tn Aana0n

W ðR;P Þ : ð29Þ
Equation (29) is computationally much more convenient
than Eq. (27) for the evaluation of expectation values
since one may use the initial density as a weight to
sample the phase space points in the average (Eq. 28).

5 The operator J

The operator J is responsible for nonadiabatic transi-
tions and concomitant momentum changes in the bath.

It appears in exponential form in the evolution operator
eiL̂Lt or directly in the iterated Dyson integral equation
form of the solution in Eqs. (27) and (29). The manner
in which this operator is implemented in numerical
simulations is one of the essential and most challenging
aspects of the construction of algorithms for quantum–
classical surface-hopping dynamics. Later we shall
discuss two ways of accounting for the action of this
operator on functions of the bath momentum in the
context of the iterated Dyson form of surface-hopping
dynamics. Subsequently, we comment on other schemes
that are under development in improved algorithms for
the evolution.

5.1 Finite difference approximation

From the form of J given in Eq. (23), one can see
that it involves bath momentum derivatives of the
form Sab � rP ¼ DEabð P

M � d̂dabÞ�1d̂dab � rP . Consequently,
momentum derivatives along the nonadiabatic coupling
vectors must be evaluated. One way to evaluate such
derivatives is by a straightforward finite difference
scheme where

d̂dab � rP f ðPÞ � ðDP Þ�1½f ðP þ d̂dabDP Þ � f ðP Þ� ; ð30Þ
where DP is a small scalar displacement. As a result, in
this scheme, every time a momentum derivative acts the
classical trajectory branches and a pair of trajectories
must be followed until the next nonadiabatic transition
where a similar branching occurs. Thus a realization of
the dynamics with n nonadiabatic transitions involves
2n trajectories. This simplistic algorithm has been used
to illustrate the properties of exact quantum–classical
surface-hopping dynamics for model systems [28]. In
practice it is useful only for short-time computations
involving small numbers of nonadiabatic transitions, as
we shall show in the next section.

5.2 Momentum-jump approximation

Branching of trajectories may be avoided by making a
‘‘momentum-jump’’ approximation to J that converts
this operator into a momentum translation operator
whose effect on any function of the momentum is to shift
the momentum by some value [3, 17]. The momentum-
jump approximation to J may be constructed in the
following way. We saw that the operator J involves
differential operators of the form 1þ 1

2 SabðP Þ � @@P

� �
acting on functions of the classical phase space co-
ordinates. Before making this approximation, it is
first convenient to make use of the explicit form
Sab ¼ DEabd̂dabðP

M � d̂dabÞ�1 and introduce a change of
variables to write the operator in the form

1þ 1

2
Sab �

@

@P

� �
¼ 1þ DEabM

@

@ðP � d̂dabÞ2
: ð31Þ

Now the prefactor of the (modified) momentum deriv-
ative depends only on the configuration and not on the
momentum.

Fig. 1. A trajectory segment with two nonadiabatic transitions that
contributes to the diagonal element qaa

WðR; P ; tÞ arising from
qbb
W ðR; P ; t ¼ 0Þ. In the time segment between t00 and t0 the system

evolves coherently and contains the phase factor Wab
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The action of the operator on any function f ðP Þ of
the momentum may be written approximately as

1þ DEabM
@

@ðP � d̂dabÞ2

 !
f ðP Þ

� eDEabM@=@ðP �d̂dabÞ2f ðP Þ ¼ f d̂d?abðP � d̂d?abÞ
h

þd̂dabsgnðP � d̂dabÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP � d̂dabÞ2 þ DEabM

q �
: ð32Þ

In the second approximate equality on the right-hand
side of this equation we have approximated the sum by
an exponential. The momentum vector may be written in
terms of its components along d̂dab and a perpendicular

vector d̂d?ab, P ¼ d̂dabðd̂dab � P Þ þ d̂d?abðd̂d?ab � PÞ. In the last line,

we used the fact that the exponential operator is a

translation operator in the variable ðP � d̂dabÞ2. If the

energy difference times the mass DEab is small compared

to twice the bath kinetic energy corresponding to the

momentum along d̂dab, ðP � d̂dabÞ2=M , we may expand the

square root in the argument of f to obtain

f d̂d?abðP � d̂d?abÞ þ d̂dabsgnðP � d̂dabÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP � d̂dabÞ2 þ DEabM

q� �

� f
�

P þ 1

2
Sab

�
: ð33Þ

Thus, to lowest order in the small parameter
DEabM=ðP � d̂dabÞ2 we may write the operators in J as
momentum translation (jump) operators.

A few observations concerning the nature of the
momentum-jump approximation can be made on the
basis of these equations. If DEab < 0 (an upward tran-
sition from a! b) and ðP � d̂dabÞ2=M < jDEabj so that
there is insufficient kinetic energy for bath momenta
along d̂dab for the quantum transition to occur, the
argument of the square root is negative leading to
imaginary momentum changes. In addition, if
DEabM=ðP � d̂dabÞ2 > 1 the conditions for the validity of
the momentum-jump approximation are violated. In
both cases the P � d̂dab prefactor in the expression for J
will make the contribution small, providing motivation
for discarding these trajectories.

It is interesting to observe that momentum jumps in
the environment corresponding to Sab are associated
with quantum transitions a! b between adiabatic states
in Tully’s surface-hopping algorithm [2].

In the following section we provide some illustrations
of the simulation of quantum–classical surface-hopping
dynamics using the schemes outlined previously.

6 Simulations of nonadiabatic dynamics

While the quantum–classical formalism discussed earlier
is applicable to any quantum system coupled to any
classical environment, it is instructive to apply the
simulation methods to simple spin-boson models [29,
30]. Such models often not only capture the essential
physics or chemistry of many real systems but also have

the advantage that numerically exact results are avail-
able for comparisons [31]. Furthermore, for this model
quantum–classical dynamics is exact, so one may test
directly the efficacy of different algorithms without
concerns related to the validity of the quantum–classical
approximation to the full quantum dynamics [32].

The spin-boson Hamiltonian describes a two-level
system with states fj ">; j #>g bilinearly coupled to a
bath of NB harmonic oscillators with masses Mj and
frequencies xj. The Hamiltonian is

ĤH ¼ ��hXr̂rx þ
XNB

j¼1

P̂Pj
2

2Mj
þ 1

2
Mjxj

2Q̂Qj
2 � cjQ̂Qjr̂rz

 !
;

ð34Þ
where 2�hX is the energy gap of the isolated two-state
system and rx and rz are Pauli spin matrices. The
coupling constants cj and frequencies xj are given by

[31] cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�hx0Mj

p
xj with xj ¼ �xc ln 1� j x0

xc

� �
and

x0 ¼ xc

NB
1� e�xmax=xc

 �

, corresponding to a system with

ohmic spectral density characterized by the Kondo

parameter n and frequency xc. The parameter xmax is

a cutoff frequency.
The quantum–classical formalism requires the partial

Wigner transform of this quantum Hamiltonian over the
bath degrees of freedom. Carrying out this transforma-
tion we obtain

ĤHW ¼ ��hXr̂rx þ
XNB

j¼1

P j
2

2Mj
þ 1

2
Mjxj

2Rj
2 � cjRjr̂rz

� �
:

ð35Þ
which depends on the classical phase space coordinates
ðR; P Þ and the spin degrees of freedom.

6.1 Dyson integral equation

The series solution for the mean value of a dynamical
variable in Eqs. (28) and (29) may be evaluated by a
hybrid Monte Carlo–molecular dynamics scheme where
the phase space point, the quantum transitions and the
times at which they occur are sampled from suitable
distributions [17, 28, 32].

First, we consider a method to evaluate the series
term by term. This scheme, while only appropriate if the
dynamics of interest involves a small number of non-
adiabatic transitions, has the advantage that one may
analyze in detail how the various terms contribute to the
average value. The term-by-term calculation of the
Dyson expansion for hAiðtÞ requires that, for a fixed
number n of quantum transitions, one must sample the
times s1; . . . ; sn at which the transitions occur. If we let
s0 ¼ 0, then for i ¼ 1; . . . ; n, si may be sampled within
the interval ðt; si�1Þ with probability ðt � si�1Þ�1. The
operator J acts at each time si. As discussed earlier, the
Dyson expansion results from the sum/integral over all
possible values of si, i ¼ 1; . . . ; n, of nþ 1 classical-like
trajectory segments resulting from adiabatic evolution
on potential energy surfaces characterized by the pair of
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indices ðaia0iÞ, interspersed by n quantum transitions.
According to Eq. (26) the ith trajectory segment carries
a quantum phase factor Waia0i

which is, of course, unity
if ai ¼ a0i.

Since J is composed of two terms (see Eq. 23), when a
transition occurs at time si, the way it acts can be treated
stochastically and one may sample with probability 1=2
to determine which of the two terms acts. If the initial
state is labelled ðbb0Þ, the first term of J changes the b
index while the second term changes the b0 index. If the
Hilbert space is completely spanned by a number, s, of
states, the initial state can be transformed by the action
of J into any of the other s� 1 states. One can associate
a statistical weight ws, to each state and use this weight
to determine which specific transition, out of the allowed
s� 1 transitions, occurs. For example, consider a system
with s ¼ 3 states with associated weights ws, s ¼ 1; 2; 3.
Imagine that at a certain si along the evolution the
system is in the state ðai; a0iÞ ¼ ð1; 1Þ and the random
sampling has determined that the first term in the J term
must act. Then a transition ai ¼ 1! ai�1 can occur with
ai�1 ¼ 2 or 3 with probabilities w2 and w3, respectively.
These probabilities can be used to determine if one must
apply J21;11 or J31;11. The ðP=MÞ � daiai�1 factor must be
computed and stored to determine the final overall
weight of the trajectory to the Dyson expansion. As
previously discussed, in the momentum-jump approxi-
mation, a transition can be rejected if there is insufficient
kinetic energy for it to take place or if the momentum
shift is too high.

Results of calculations of the mean population dif-
ference in the spin up and down states, hrziðtÞ, are shown
in Fig. 2. This figure plots the individual contributions
to hrziðtÞ coming from adiabatic dynamics and nonadi-
abatic dynamics with n ¼ 1; 2; 3 and 4 jumps. From
these results one can see that in the time interval shown
the successive contributions decrease in magnitude,
indicating convergence of the series for hrziðtÞ.
For longer times successively more terms in the series
corresponding to greater numbers of nonadiabatic
transitions must be taken into account.

The sum of the adiabatic and the first four nonadia-
batic contributions in the Dyson series for hrziðtÞ is com-

pared in Fig. 3 with the corresponding result obtained
using a finite-difference evaluation of the momentum
derivative in J . One can see that the finite-difference and
momentum-jump approximations are in good accord for
our spin-boson model. For longer times where higher-
order terms in the series must be taken into account, the
solution becomes numerically unstable and this method
cannot be used to obtain these terms in the series.

6.2 Sequential short-time propagation

The previous scheme, while conceptually attractive, does
not provide the most efficient way to simulate quantum–
classical dynamics since each time t requires a separate
calculation. It is a simplematter to construct a scheme that
allows one to obtain the entire history in a single
simulation. This method relies on writing the quantum–
classical time evolution operator as a sequence of small
finite-time intervals and then concatenating the results to
obtain the solution.

Since the quantum–classical Liouville operator L̂L is
time-independent, the evolution operator may be written
as a composition of evolution operators in time segments
of arbitrary length [33]. Suppose we divide the time
interval t into N segments of lengths Dtj ¼ tj � tj�1. Then

eiLt

 �

a0a00;aN a0N
¼

X
ða1a01Þ...ðaN�1a0N�1Þ

�
YN
j¼1

�
eiLðtj�tj�1Þ

�
aj�1a0j�1;aja0j

: ð36Þ

If the time interval Dt is assumed to be sufficiently small,
we can make a one-point approximation to the time
integral by choosing a point t0 in Dt. Letting t0 ¼ tj we
obtain,

eiL̂Lðtj�tj�1Þ
� �

aj�1a0j�1;aja0j
� e

iL0
aj�1a0

j�1
ðtj�tj�1Þ

� daj�1ajda0j�1a
0
j
� DtJaj�1a0j�1;aja0j

� �

¼Waj�1a0j�1
ðtj�1; tjÞe

iLaj�1a0
j�1
ðtj�tj�1Þ

� daj�1ajda0j�1a
0
j
� DtJaj�1a0j�1;aja0j

� �
: ð37Þ

Fig. 2. Adiabatic and nonadiabatic contributions to the average
population difference between the spin up and spin down states,
hrziðtÞ, versus time. System parameters n ¼ 0:1, b ¼ 3:0=�hxc,
NB ¼ 10, xmax ¼ 3:0 and X ¼ xc=3. Different curves correspond
to contributions in the Dyson series for n ¼ 0; . . . ; 4: n ¼ 0
adiabatic dynamics (filled squares); n ¼ 1 (circles); n ¼ 2 (triangles);
n ¼ 3 (diamonds); n ¼ 4 (open squares)

Fig. 3. Comparison of momentum-jump and finite-difference
approximations to the J operator in the calculation of hrziðtÞ
including up to four nonadiabatic transitions. The system param-
eters are the same as in Fig. 2. Momentum-jump approximation
(circles); finite-difference approximation using DP ¼ 0:05 (triangles)
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At the end of each small segment, the system either may
remain in the same pair of adiabatic states or may make
a transition to a new pair of states. Substituting this
expression into Eq. (36) we obtain

eiLt

 �

a0a00;aN a0N
�

X
ða1a01Þða2a

0
2
Þ...ðaN�1a0N�1Þ

�
YN
j¼1

e
iL0

aj�1a0
j�1
ðtj�tj�1Þ

�
�
daj�1ajda0j�1a

0
j
� DtJaj�1a0j�1;aja0j

�
: ð38Þ

Here and later tj ¼ jDt and tN ¼ t. In the limit N !1,
Dt ! 0 with NDt ¼ t we recover the iterated form of the
Dyson integral propagator. This may be seen by
expanding the terms in Eq. (38) and using the propaga-

tor to compute A
a0a00
W ðR; P ; tÞ to obtain

A
a0a00
W ðR; P ; tÞ ¼ e

iL0

a0a0
0

t
A

a0a00
W ðR; P Þ

þ
XN

n¼1
ð�1Þn

X
ða1a01Þ...ðan�1a0n�1Þ

�
XN�nþ1

k1¼1

XN�nþ2

k2¼k1þ1
� � �

XN

kn¼kn�1þ1
e

iL0
a0a0

0

ðtk1�t0Þ

� ðDtJa0a00;a1a
0
1
Þe

iL0

a1a0
1

ðtk2�tk1 Þ

� ðDtJa1a01;a2a
0
2
Þ � � � ðDtJan�1a0n�1;aN a0N

Þ

� e
iL0

aN a0
N
ðt�tkn Þ

A
aN a0N
W ðR; P Þ : ð39Þ

In this equation no sum over the ðaia0iÞ indices is to be
taken for n ¼ 1. By inspection, it is evident that in the
limit given previously, Eq. (39) is the discretized version
of the iterated form of the Dyson expression in Eq. (29).

The implementation of the sequential short-time
propagation algorithm is considerably simpler than that
used for the term-by-term calculation of the Dyson ser-
ies. The total time t of the calculation is divided into a
fixed number of time slices. The most natural choice is to
take the molecular dynamics integration time step Dt as
the length of the slice. Using this choice, the phase space
coordinates are propagated adiabatically for a single time
step and the phase factor W is calculated for this time
step. At the end of each single time step the probabilities

P ¼ P
M
� d

����
����Dt 1þ P

M
� d

����
����Dt

� ��1
; ð40Þ

and R ¼ 1�P, respectively, are used to accept or reject
a quantum transition. If the transition is accepted a
factor P�1 is included in the observable and the operator
DtJ acts to change quantum state giving rise to another
factor Dt P

M � d in the observable. If the transition is
rejected the factor R�1 multiplies the observable.
Ensemble averages can be calculated very efficiently for
each single time step along the trajectory from a single
calculation, while in the term-by-term method one needs
a separate calculation for every t.

The scheme naturally permits the occurrence of a
quantum transition at each time slice; however, there are
limitations on the total time over which the simulation
may be carried out. The realizations that contain a large
number of nonadiabatic transitions involve oscillating
phase factors associated with each adiabatic trajectory
segment. In addition, each time J acts it provides a
factor proportional to P

M � d which can oscillate in sign
and magnitude. Consequently, large ensembles of such
trajectories are needed to obtain good statistics. In
practice, a trade-off is necessary to reduce the statistical
error intrinsic in the calculation. To this aim one can set
a bound, nmax, on the allowed number of quantum
transitions per trajectory so that the propagation of the
trajectory is truncated at a time t0 � t when n ¼ nmax þ 1.
As a result the number of members in the ensemble can
vary as a function of time. Because the number of
allowed transitions is restricted to nmax the calculation
will yield accurate results only for times t for which
the dynamics is accurately represented by n � nmax

nonadiabatic transitions.
The time evolution of hrziðtÞ was computed using this

algorithm and the results are compared with the
numerically exact influence functional and the term-by-
term Dyson method in Fig. 4. One can see that the re-
sults are in good accord. From the sequential short-time
propagation algorithm, information at all intermediate
times is available at a computational cost equivalent to
that of a single point in the term-by-term method. For
these spin-boson parameters ensembles of small num-
bers of trajectories are needed to obtain the results for
t � 9. For example, ensembles of 104 trajectories or
fewer reproduce the results shown in the figure. In the
figure on can also see that beyond t > 9 numerical
instabilities, which have their origin in the increasing
magnitude of the product of weight factors R�1 and the
errors introduced by the use of the momentum-jump
approximation, become pronounced. Much larger
ensembles whose sizes increase with time are needed to
obtain reliable results.

It is of interest to extract additional information
about the nonadiabatic dynamics from this calculation.

Fig. 4. Comparison of results for hrziðtÞ using the Dyson series and
sequential short-time propagation algorithms with influence func-
tional results. System parameters n ¼ 0:007, b ¼ 3:0=�hxc, N ¼ 10,
xmax ¼ 3:0 and X ¼ xc=3. Dyson series (squares); sequential short-
time propagation algorithm (pluses with errorbars); influence
functional results (triangles). The triangles and squares overlap
and are not always distinguishable in the graph
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The average number of nonadiabatic transitions hNniðtÞ
is plotted in Fig. 5 as a function of time. For up to
intermediate times, this number grows linearly with
time, indicating a constant mean transition probability
per unit time of 0.204. For the longest times in this figure
one observes deviations from linear behavior arising
from the fact that the number of transitions was
restricted to a maximum of nmax ¼ 4. Even for times up
to t ¼ 9 the deviations are not large, indicating that
including up to four nonadiabatic transitions provides a
good description of the dynamics.

It is possible to analyze the contributions of the
individual nonadiabatic transitions in more detail by
monitoring the fraction of trajectories, Fn, in the
ensemble which undergo n transitions as a function of
time. This fraction is plotted in Fig. 6 and it shows that
indeed retaining up to four transitions captures the
essential features of the dynamics in this time interval.
Furthermore, as expected, the contributions from higher
numbers of transitions have their major effects at pro-
gressively longer times: the n ¼ 0 contribution peaks at
t ¼ 0, the n ¼ 1 contribution at around t ¼ 5, the n ¼ 2
contribution at t ¼ 10 and the n ¼ 3 contribution at
t ¼ 15.

7 Conclusion

Quantum–classical evolution equations for either the
density matrix or the dynamical variables provide a

means to study the nonadiabatic dynamics of quantum
systems embedded in general classical many-body envi-
ronments. The evolution equations describe the coupled
evolution of the quantum and classical subsystems and
do not require a separate ansatz for the classical
evolution segments, as is the case in other mixed
quantum–classical schemes. The solutions of the evolu-
tion equations can be formulated in terms of surface-
hopping dynamics which, in principle, can be carried out
exactly in the context of quantum–classical dynamics.
The results presented in this paper and the cited
literature have demonstrated the utility of this scheme
for studying nonadiabatic dynamics.

The construction of effective methods to simulate the
evolution prescribed by the quantum–classical Liouville
equation is a topic of current research. In addition to the
methods discussed here, the quantum–classical evolution
equations have been solved [34, 35] for low-dimensional
models using the multiple-threads algorithm [36]. For
some applications it is more convenient to work in the
subsystem basis. The dynamics of the decay from excited
states and simple barrier crossing problems have been
investigated in this representation by associating
Gaussian wave packets with the trajectory evolution
[16].

Algorithms based on a Trotter factorization of the
quantum–classical propagator are under development
[27]. A Trotter factorization of the quantum–classical
propagator in conjunction with Gaussian wavepacket
evolution has been employed to obtain solutions to the
quantum–classical Liouville equation [27]. Such schemes
have the advantage that they avoid the use of the
momentum-jump approximation and at the same time
preserve the unitary character of the evolution.

One may also utilize algorithms based on stochastic
quantum–classical evolution equations [37] where part
of the classical bath is described by stochastic dynamics
or reduced equations of motion where the classical bath
variables are projected out of the description yielding
equations for the quantum subsystem [38].

Although this paper has focused on simulation
algorithms for quantum–classical dynamics and their
interpretation in terms of surface-hopping trajectories, a
statistical mechanical theory of quantum–classical
dynamics has been developed [3, 19] which allows one to
compute transport properties in terms of equilibrium
time correlation functions. In particular, one may use
this formalism to compute the rates of nonadiabatic
chemical reactions directly from the reactive flux corre-
lation functions [25].

While both the formalism for quantum-classical
dynamics and the construction of efficient algorithms for
its simulation are active areas of research that should see
further development in the future, the results presented
here show that the present approach to quantum
dynamics already offers a promising route for the study
of a variety problems in this area.
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